Quantifying place

Analyzing the drivers of pedestrian activity in dense urban environments

Understanding pedestrian behavior is critical for many aspects of city planning, design, and management, including transportation, public health, emergency response, and economic development. This study bridges in-situ observations of pedestrian activity and urban computing by integrating high-resolution, large-scale, and heterogeneous urban datasets and analyzing both fixed attributes of the urban landscape (e.g. physical and transit infrastructure) with dynamic environmental and socio-psychological factors, such as weather, air quality, and perceived crime risk.

Figure 2

Screen Shot 2019-04-21 at 4.13.19 PM

Webp.net-gifmakerWe use local pedestrian count data collected by the New York City (NYC) Department of Transportation (DOT) and an extensive array of open datasets from NYC to test how pedestrian volumes relate to land use, building density, streetscape quality, transportation infrastructure, and other factors typically associated with urban walkability. We quantify, classify, and analyze place dynamics, including contextual and situational factors that influence pedestrian activity at high spatial-temporal resolution. The quantification process measures the urban context by extracting rich, yet initially fragmented and siloed, urban data for individual geolocations. Based on these features, we then construct contextual indicators by selecting and combining features relevant to the pedestrian activity and develop a typology of place to support the generalizability of our analysis. Finally, we use multivariate regression models with panel-corrected standard errors to estimate how specific contextual features and time-varying situational indicators impact pedestrian activity across the time of day, day of the week, season, and year.

Figure 10_R1_R1
Quantified urban context; examples for each place type.

The results provide insights into the key drivers of local pedestrian activity and highlight the importance of accounting for the immediate urban environment and socio-spatial dynamics in pedestrian behavior modeling.

Figure 8_R1
The two-way partial dependence plot shows the dependence of local pedestrian volume on the joint effects of local total residents and workers during different time periods.

A preliminary study was presented at 2017 International Conference on Sustainable Infrastructure hosted by American Society of Civil Engineers (ASCE). The full research paper is published in Landscape and Urban Planning vol. 180 (2018).

For citation: Lai, Y., & Kontokosta, C. E. (2018). Quantifying place: Analyzing the drivers of pedestrian activity in dense urban environments. Landscape and Urban Planning, 180, 166-178.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s